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Abstract

Based on a comparison principle, we derive an exponential rate of convergence for solutions to the initial–
boundary value problem for a class of quasilinear parabolic equations in one space dimension. We then 
apply the result to some models in population dynamics and image processing.
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1. Introduction

In this paper, we study large time behaviors of solutions to the initial–boundary value problem 
for a class of quasilinear advection–diffusion equations in one space dimension:

⎧⎪⎨
⎪⎩

ρt = (σ (ρ))xx in � × (0,∞),

ρ = ρ0 on � × {t = 0},
ρ(0, t) = ρ(L, t) = 0 for t ∈ (0,∞).

(1.1)
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Here, � = (0, L) ⊂ R is the spatial domain of a given length L > 0, σ = σ(s) ∈ C2(R) is the 
flux function, ρ0 = ρ0(x) is a given initial datum, and ρ = ρ(x, t) is a solution to the problem.

After the pioneering work of Zelenjak [18] and Matano [12], there have been many studies 
on the analysis of ω-limit sets and large time behaviors of solutions to some semilinear or quasi-
linear parabolic problems in one space dimension; see, e.g., [2,17,5]. In particular, the work [17]
considered a general quasilinear problem, which includes problem (1.1) as a special case, and 
proved the convergence of a global classical solution to a unique steady state in the space C1(�̄)

as t → ∞ if the solution itself is assumed to be bounded in C1(�̄) uniformly in t ≥ 0.
In the present article, we show that a global classical solution to problem (1.1) converges 

uniformly to the steady state 0 as t → ∞ at an exponential rate. The difference of our result from 
that in [17] is in two-fold. First, we do not assume the uniform boundedness of the solution to 
(1.1) in C1(�̄). Second, we obtain specific exponential rates of convergence depending only on 
the initial datum ρ0, the flux function σ and the size L of the spatial domain �.

The main motivation of our result lies in its application to study large time behaviors of global 
weak solutions to some problems modeling aggregative movement in population dynamics [16,
1] and enhancement of a noisy picture in image processing [14]. However, proving the global 
existence of such solutions is not at all obvious since those problems are often forward and back-
ward parabolic so that the standard methods of parabolic equations are not applicable. Actually, 
such existence results can be obtained through a combination of the result of this paper and the 
method of convex integration as one can see in a recent work of the author and Yan [10]. In this 
paper, we apply the main result to address large time behaviors of classical solutions to such 
problems for suitable initial data.

We now state the main result of the paper as follows.

Theorem 1.1. Assume that σ ′ > 0 in R. Let ρ ∈ C(�̄×[0, ∞)) ∩C2,1(� × (0, ∞)) be a solution 
to problem (1.1), where ρ0 ∈ C(�̄) is an initial datum satisfying the compatibility condition 
ρ0(0) = ρ0(L) = 0. Then for all t ≥ 0, one has

‖ρ(·, t)‖∞ ≤‖ρ0‖∞
max

{ ‖ρ0‖∞ θ̃
(1−τ)θ

+ 1,m
}

− e−λL

max
{ ‖ρ0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− 1

× exp

(
− τθλ2e−λL

max
{ ‖ρ0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− e−λL

t

)
,

(1.2)

where ‖ · ‖∞ := ‖ · ‖L∞(�), 0 < τ < 1, λ > 0, m > 1,

θ := min
[−‖ρ0‖∞ m

m−1 ,‖ρ0‖∞ m
m−1 ]

σ ′ and θ̃ := max
[−‖ρ0‖∞ m

m−1 ,‖ρ0‖∞ m
m−1 ]

|σ ′′|.

The constants τ , λ and m in the theorem can be chosen arbitrarily as described to fix the rate 
of convergence; once these numbers are fixed, it is clear that the rate of convergence depends 
only on ρ0, σ and L.

The rest of the paper is organized as follows. In Section 2, we derive appropriate maximum 
and comparison principles for qualitative behaviors of solutions to problem (1.1). Based on such 
a comparison principle, the proof of the main result, Theorem 1.1, is provided in Section 3. 
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As the last part of the paper, in Section 4, we apply the main result to the initial–boundary 
value problems for the heat equation, two aggregation models in population dynamics and the 
Perona–Malik model in image processing.

In closing this section, we fix some notation. First, we will keep the notation, used in this 
section, throughout the paper unless otherwise stated. We use W 1,∞(�) to denote the space of 
functions v ∈ L∞(�) with weak derivative v′ = vx ∈ L∞(�) and write the norm ‖v‖W 1,∞(�) :=
‖v‖L∞(�) +‖vx‖L∞(�). Let G ⊂ R

2 =Rx ×Rt be an open set. For integers k, l ≥ 0 with 2l ≤ k, 
we denote by Ck,l(Ḡ) [resp. Ck,l(G)] the space of functions v ∈ C(Ḡ) [v ∈ C(G)] with ∂i

t ∂
j
x v ∈

C(Ḡ) [∂i
t ∂

j
x v ∈ C(G)] for all integers 0 ≤ i ≤ l and 0 ≤ j + 2i ≤ k. For an integer k ≥ 0 and a 

number α ∈ (0, 1), we write Ck+α, k+α
2 (Ḡ) := Hk+α(G), where Hk+α(G) is the parabolic Hölder 

space defined in [11].

2. Maximum and comparison principles

In this section, we prepare two useful lemmas dealing with maximum and comparison princi-
ples concerning problem (1.1). Throughout this section, we assume that

σ ∈ C2(R) and σ ′ ≥ 0 in R.

2.1. Maximum principle

The maximum principle below states that any classical solution ρ to problem (1.1) goes nei-
ther above the maximum value nor below the minimum value of the initial datum ρ0 for all 
times.

Lemma 2.1 (Maximum principle). Let ρ ∈ C(�̄ × [0, ∞)) ∩ C2,1(� × (0, ∞)) be a solution 
to problem (1.1), where ρ0 ∈ C(�̄) is an initial datum satisfying the compatibility condition 
ρ0(0) = ρ0(L) = 0. Then

min
�̄

ρ0 ≤ ρ ≤ max
�̄

ρ0 in � × (0,∞).

Proof. For simplicity, let us write M0 = max�̄ ρ0, m0 = min�̄ ρ0 and �τ = � × (0, τ) for each 
0 < τ ≤ ∞; then m0 ≤ 0 ≤ M0. We also set W(x, t) = ρ(x, t) − M0 and w(x, t) = ρ(x, t) − m0
for all (x, t) ∈ �̄∞. Then it is sufficient to show that

W ≤ 0 and w ≥ 0 in �∞.

We only prove that w ≥ 0 in �∞ as the other inequality W ≤ 0 can be verified in the same 
way. To argue by contradiction, suppose there exists a point (x0, t0) ∈ �∞ such that

w(x0, t0) < 0. (2.1)

Fix any number T ∈ (t0, ∞), and define

z(x, t) = e−tw(x, t) for all (x, t) ∈ �̄T ; (2.2)
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then z(x, 0) = ρ0(x) − m0 ≥ 0 for all x ∈ �̄, and z(0, t) = z(L, t) = −e−tm0 ≥ 0 for all t ∈
[0, T ]. This together with (2.1) implies that

z(x1, t1) = min
�̄T

z ≤ e−t0w(x0, t0) < 0 for some (x1, t1) ∈ � × (0, T ].

From this, we have

zt (x1, t1) ≤ 0, e−t1ρx(x1, t1) = zx(x1, t1) = 0, and

e−t1ρxx(x1, t1) = zxx(x1, t1) ≥ 0.
(2.3)

From (2.2) and (2.3), we get

0 ≥ zt (x1, t1) = e−t1(wt (x1, t1) − w(x1, t1)),

yielding wt(x1, t1) ≤ w(x1, t1) = et1z(x1, t1) < 0. On the other hand, from (1.1), (2.3) and the 
assumption that σ ′ ≥ 0 in R, we have

wt(x1, t1) = ρt (x1, t1) = σ ′(ρ(x1, t1))ρxx(x1, t1) + σ ′′(ρ(x1, t1))(ρx(x1, t1))
2

= σ ′(ρ(x1, t1))ρxx(x1, t1) ≥ 0.

We thus arrive at a contradiction. �
2.2. Comparison principle

The quasilinear comparison principle below will be the pivotal tool for proving the main 
result of the paper, Theorem 1.1, in Section 3.

Lemma 2.2 (Comparison principle). Assume that v, w ∈ C(�̄ × [0, ∞)) ∩ C2,1(� × (0, ∞))

satisfy

either

{
vt ≥ (σ (v))xx

wt < (σ(w))xx
in � × (0,∞)

or

{
vt > (σ (v))xx

wt ≤ (σ (w))xx
in � × (0,∞)

(2.4)

and v > w on ∂(� × (0, ∞)). Then v > w in � × (0, ∞).

Proof. To prove by contradiction, let us suppose that

v(x0, t0) ≤ w(x0, t0) for some (x0, t0) ∈ � × (0,∞).

Fix a number T ∈ (t0 + 1, ∞), and define

z(x, t) = e−t (v(x, t) − w(x, t)) ∀(x, t) ∈ �̄ × [0, T ].
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Then

z > 0 on (� × {0}) ∪ (∂� × [0, T ]) and z(x0, t0) ≤ 0. (2.5)

Define

T = {
t ∈ [0, T ] | z > 0 on �̄ × [0, t]} and t∗ = supT .

By (2.5), we have 0 ∈ T and t /∈ T for all t0 ≤ t ≤ T ; hence {0} ⊂ T ⊂ [0, t0), and so 0 ≤ t∗ ≤
t0 < T − 1. By the definition of t∗, for each j ∈ N, we have

z(xj , tj ) ≤ 0 for some (xj , tj ) ∈ �̄ × [t∗, t∗ + 1/j).

Passing to a subsequence if necessary, we have xj → x∗ as j → ∞ for some x∗ ∈ �̄; then 
z(x∗, t∗) ≤ 0. From this and (2.5), we now see that x∗ ∈ � and 0 < t∗ ≤ t0. Also, by the definition 
of t∗, we have z > 0 on �̄ × [0, t∗). So we easily deduce that at the point (x, t) = (x∗, t∗),

z = 0, zx = 0, zxx ≥ 0 and zt ≤ 0; (2.6)

thus at (x, t) = (x∗, t∗),

v = w, vx = wx and vxx ≥ wxx. (2.7)

On one hand, we have from (2.6) that

0 ≥ zt (x
∗, t∗) = e−t∗((v − w)t (x

∗, t∗) − (v − w)(x∗, t∗));
thus by (2.7), we get

(v − w)t (x
∗, t∗) ≤ (v − w)(x∗, t∗) = 0.

On the other hand, it follows from (2.4), (2.7) and σ ′ ≥ 0 that

(v − w)t (x
∗, t∗) >σ ′(v(x∗, t∗))vxx(x

∗, t∗) − σ ′(w(x∗, t∗))wxx(x
∗, t∗)

+ σ ′′(v(x∗, t∗))(vx(x
∗, t∗))2 − σ ′′(w(x∗, t∗))(wx(x

∗, t∗))2

=σ ′(v(x∗, t∗))(vxx(x
∗, t∗) − wxx(x

∗, t∗)) ≥ 0;
that is, (v − w)t (x

∗, t∗) > 0. We thus have a contradiction. �
3. Proof of Theorem 1.1

Using the comparison principle, Lemma 2.2, we now prove our main result, Theorem 1.1.
To start the proof, fix any 0 < τ < 1, λ > 0 and m > 1. Let 0 < ε ≤ 1. Define

ϕ(x) = ϕs,λ(x) = s − e−λx for all x ∈ �̄,

where s ∈ [m, ∞) is a constant to be specified later. Then
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δ0 := min
�̄

ϕ = s − 1 > 0 and δ1 := max
�̄

ϕ = s − e−λL.

Next, we define that for all (x, t) ∈ �̄ × [0, ∞),

ψ(x, t) = ψs,λ,γ,A(x, t) = A
ϕ(x)

δ0
e−γ t and ψ̃(x, t) = −ψ(x, t),

where γ > 0 and A > 0 are constants to be chosen below. Observe that for all x ∈ �̄,

ψ(x,0) = A
ϕ(x)

δ0
≥ A and ψ̃(x,0) = −ψ(x,0) ≤ −A

and that for all t > 0,

ψ(0, t) = Ae−γ t > 0, ψ(L, t) = A
δ1

δ0
e−γ t > 0,

ψ̃(0, t) = −ψ(0, t) < 0 and ψ̃(L, t) = −ψ(L, t) < 0.

We choose A = Aε = ‖ρ0‖∞ + ε; then it follows that

ψ̃ < ρ < ψ on ∂(� × (0,∞)). (3.1)

Let (x, t) ∈ � × (0, ∞). We first compute

ψx(x, t) = Aε

δ0
λe−λxe−γ t , ψxx(x, t) = −Aε

δ0
λ2e−λxe−γ t and

ψt(x, t) = −Aε

δ0
γ (s − e−λx)e−γ t .

Using these, we get

Lψ(x, t) := − ψt(x, t) + (σ (ψ(x, t)))xx

= − ψt(x, t) + σ ′(ψ(x, t))ψxx(x, t) + σ ′′(ψ(x, t))(ψx(x, t))2

=Aε

δ0
γ (s − e−λx)e−γ t − σ ′(ψ(x, t))

Aε

δ0
λ2e−λxe−γ t

+ σ ′′(ψ(x, t))
A2

ε

δ2
0

λ2e−2λxe−2γ t

and

Lψ̃(x, t) = − Aε

δ0
γ (s − e−λx)e−γ t + σ ′(ψ̃(x, t))

Aε

δ0
λ2e−λxe−γ t

+ σ ′′(ψ̃(x, t))
A2

ε

δ2
λ2e−2λxe−2γ t .
0
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From the definition of ψ and the choice s ≥ m > 1, we see that

0 < ψ(x, t) ≤ Aε

δ1

δ0
= Aε

s − e−λL

s − 1
< Aε

s

s − 1
≤ Aε

m

m − 1
=: Rε

and that

−Rε < ψ̃(x, t) = −ψ(x, t) < 0.

We set

θε = min[−Rε,Rε ]
σ ′ > 0 and θ̃ε = max[−Rε,Rε ]

|σ ′′|;

then

Lψ(x, t) ≤Aε

δ0
γ (s − e−λx)e−γ t − θε

Aε

δ0
λ2e−λxe−γ t + θ̃ε

A2
ε

δ2
0

λ2e−2λxe−2γ t

=
(Aε

δ0
γ (s − e−λx)e−γ t − τ

θεAε

δ0
λ2e−λxe−γ t

)

+
( θ̃εA

2
ε

δ2
0

λ2e−2λxe−2γ t − (1 − τ)
θεAε

δ0
λ2e−λxe−γ t

)
= : I1 + I2

and

Lψ̃(x, t) ≥ − Aε

δ0
γ (s − e−λx)e−γ t + θε

Aε

δ0
λ2e−λxe−γ t − θ̃ε

A2
ε

δ2
0

λ2e−2λxe−2γ t

=
(

− Aε

δ0
γ (s − e−λx)e−γ t + τ

θεAε

δ0
λ2e−λxe−γ t

)

+
(

− θ̃εA
2
ε

δ2
0

λ2e−2λxe−2γ t + (1 − τ)
θεAε

δ0
λ2e−λxe−γ t

)
= : J1 + J2.

We now control the quantities I1 = −J1 and I2 = −J2. Since λx > 0 and γ t > 0, we have

I2 ≤ θ̃εA
2
ε

δ2
0

λ2e−λxe−γ t − (1 − τ)
θεAε

δ0
λ2e−λxe−γ t

= Aελ
2e−λxe−γ t

δ0

(Aεθ̃ε

δ0
− (1 − τ)θε

)
< 0

and J2 = −I2 > 0 provided that the constant s ∈ [m, ∞) is chosen so large that



S. Kim / J. Differential Equations 264 (2018) 82–97 89
s >
Aεθ̃ε

(1 − τ)θε

+ 1. (3.2)

Next, we have

I1 = Aεe
−γ t

δ0
(γ (s − e−λx) − τθελ

2e−λx) ≤ 0 and J1 = −I1 ≥ 0

if the constant γ > 0 is chosen so small that

γ ≤ τθελ
2e−λL

s − e−λL
. (3.3)

In summary, if we let

A = Aε = ‖ρ0‖∞ + ε, Rε = Aε

m

m − 1
, θε = min[−Rε,Rε ]

σ ′, θ̃ε = max[−Rε,Rε ]
|σ ′′|,

s = sε = max
{ Aεθ̃ε

(1 − τ)θε

+ 1,m
}

+ ε, and γ = γε = τθελ
2e−λL

sε − e−λL
,

then (3.2) and (3.3) are satisfied so that for all (x, t) ∈ � × (0, ∞),

Lψ(x, t) ≤ I1 + I2 < 0 < J1 + J2 ≤ Lψ̃(x, t).

With this and (3.1), we can apply Lemma 2.2 to obtain that for all (x, t) ∈ � × (0, ∞),

−ψ(x, t) = ψ̃(x, t) < ρ(x, t) < ψ(x, t),

that is,

|ρ(x, t)| < ψ(x, t) ≤ Aε

δ1

δ0
e−γε t = Aε

sε − e−λL

sε − 1
e−γε t .

Letting ε → 0+, it follows that for all (x, t) ∈ � × (0, ∞),

|ρ(x, t)| ≤‖ρ0‖∞
max

{ ‖ρ0‖∞ θ̃
(1−τ)θ

+ 1,m
}

− e−λL

max
{ ‖ρ0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− 1

× exp

(
− τθλ2e−λL

max
{ ‖ρ0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− e−λL

t

)
,

where

θ := min
[−‖ρ0‖∞ m

m−1 ,‖ρ0‖∞ m
m−1 ]

σ ′ and θ̃ := max
[−‖ρ0‖∞ m

m−1 ,‖ρ0‖∞ m
m−1 ]

|σ ′′|.

The proof of Theorem 1.1 is now complete.
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4. Applications

In this section, we apply the main result, Theorem 1.1, to the initial–boundary value prob-
lems concerning three types of equations in one space dimension. In particular, we are mainly 
interested in estimating an exponential rate of convergence for evolutions arising in population 
dynamics and image processing.

Throughout this section, let α ∈ (0, 1) be any fixed number representing a Hölder exponent.

4.1. Heat diffusion

As a model example, we consider the initial value problem of the heat equation

{
ρt = ρxx in � × (0,∞),
ρ = ρ0 on � × {t = 0}, (4.1)

coupled with either the Dirichlet boundary condition

ρ = 0 on ∂� × (0,∞) (4.2)

or the Neumann boundary condition

ρx = 0 on ∂� × (0,∞), (4.3)

where � = (0, 1) ⊂ R, ρ0 = ρ0(x) is a given initial datum, and ρ = ρ(x, t) is a solution to the 
problem.

Let us first assume that ρ ∈ C(�̄ × [0, ∞)) ∩ C2,1(� × (0, ∞)) is a solution to problem 
(4.1)(4.2), where ρ0 ∈ C(�̄) satisfies the compatibility condition ρ0(0) = ρ0(1) = 0. Following 
the notation of Theorem 1.1, we now have L = 1, θ = 1 and θ̃ = 0; thus letting τ → 1− to the 
result of the theorem, we obtain that for all t ≥ 0,

‖ρ(·, t)‖∞ ≤ ‖ρ0‖∞
m − e−λ

m − 1
e
− λ2e−λ

m−e−λ t
,

where λ > 0 and m > 1 are arbitrary. Here, the least upper bound for the rates γ (λ, m) = λ2e−λ

m−e−λ

with λ > 0 and m > 1 lies in the interval (0.64, 0.65). However, in this case, it is well known 
from the explicit formula [3, Chapter 6] that the exponential rate of convergence for the solution 
ρ can be π2, which is much larger than our value. Thus our result may not give an optimal rate 
of convergence.

Next, we assume that ρ ∈ C2,1(�̄ × [0, ∞)) is a solution to problem (4.1)(4.3), where ρ0 ∈
C2(�̄) satisfies the compatibility condition ρ′

0(0) = ρ′
0(1) = 0. By the smoothing effect of the 

heat diffusion, we know that ρ is smooth in � × (0, ∞). Let w = ρx ∈ C1,0(�̄ × [0, ∞)) ∩
C∞(� × (0, ∞)); then, with w0 = ρ′

0 ∈ C1(�̄), it is easy to see that w solves problem (4.1)(4.2), 
where ρ and ρ0 are replaced by w and w0, respectively. Therefore, we can use the above result 
and Poincaré’s inequality to conclude that

‖ρ(·, t) − ρ̄0‖W 1,∞(�) ≤ Ce−γ t ∀t ≥ 0,
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where ρ̄0 := ∫ 1
0 ρ0(x) dx, λ > 0, m > 1, γ = λ2e−λ

m−e−λ , and C > 0 is a constant depending only 
on ‖ρ′

0‖∞, m and λ.

4.2. Aggregative movement in population dynamics

The evolution process for spatial distribution of animals or biological organisms in one-
dimensional homogeneous habitat can be modeled by quasilinear advection–diffusion equations 
of the form

ρt = (σ (ρ))xx, (4.4)

where ρ = ρ(x, t) denotes the population density of a single species at position x and time t , and 
the derivative of a given flux function σ = σ(s) is the diffusivity of equation (4.4).

As an alternative to the �-model proposed by Taylor and Taylor [15] for modeling aggrega-
tive movement, Turchin [16] derived equation (4.4), based on a random walk approach [13], as 
a model of individual movement, which is not only reflecting aggregation or repulsion between 
conspecific organisms but also avoiding some defects in their model. In his model, the flux func-
tion σ is given by

σ(s) = 2k0

3ω
s3 − k0s

2 + μ

2
s,

where k0 > 0 is the maximum degree of gregariousness, ω > 0 is the critical density at which 
movement switches from aggregative to repulsive, and μ ∈ (0, 1] is the motility rate.

On the other hand, Anguige and Schmeiser [1] independently obtained equation (4.4), based 
also on the random walk approach, as a model of cell motility which incorporates the effects of 
cell-to-cell adhesion and volume filling. In their model, the flux function σ is given by

σ(s) = as3 − 2as2 + s, (4.5)

where a ∈ [0, 1] is the adhesion constant.
For definiteness, let us adopt the flux function σ in (4.5) and consider the initial–boundary 

value problem

⎧⎨
⎩

ρt = (σ (ρ))xx in � × (0,∞),

ρ = ρ0 on � × {t = 0},
ρ(0, t) = ρ(L, t) = 0 for t ∈ (0,∞),

(4.6)

where � = (0, L) ⊂ R is a favorable habitat of size L > 0, and ρ0(x) is the initial density of a 
given species at position x. Here, the absorbing boundary condition ρ(0, t) = ρ(L, t) = 0 means 
in a viewpoint of ecology that animals touching the border ∂� = {0, L} are permanently lost to 
the population, either because they move away from the habitat � or because they are killed by 
predators residing in the very hostile surrounding area R \ �̄.

Note that the diffusivity σ ′ is

σ ′(s) = 3as2 − 4as + 1 = 3a
(
s − 2)2 + 1 − 4

a.

3 3
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In case of a weak adhesion effect with 0 ≤ a < 3
4 , the diffusivity σ ′ is positive everywhere with 

absolute minimum value 1 − 4
3a > 0, and so problem (4.6) is well-posed and admits a global 

classical solution ρ for all sufficiently smooth initial data ρ0 with ρ0(0) = ρ0(L) = 0. In a highly 
aggregative species with 3

4 < a ≤ 1, since the diffusivity σ ′ can take both positive and negative 
values, (4.6) is ill-posed and may not even possess a local classical solution for some smooth 
initial data. The critical adhesion constant a = 3

4 makes (4.6) degenerate parabolic; we do not 
handle this case here.

To be more specific, let us first consider the case that 0 ≤ a < 3
4 . Let ρ0 ∈ C2+α(�̄) be such 

that ρ0 ≥ 0 in � and ρ0(0) = ρ0(L) = 0. Then it follows from [11, Theorem 12.14] that there 
exists a unique solution ρ ∈ C2,1(�̄ × [0, ∞)) to problem (4.6) such that ρ ∈ C2+α,1+ α

2 (�̄ ×
[0, T ]) for each T > 0. From Lemma 2.1 and the initial and boundary conditions, we have that 
for all t2 > t1 ≥ 0,

0 = min
�̄

ρ(·, t1) = min
�̄

ρ(·, t2) ≤ max
�̄

ρ(·, t2) ≤ max
�̄

ρ(·, t1).

To apply Theorem 1.1, fix any 0 < τ < 1, λ > 0 and m > 1. Following the notation of the 
theorem, we easily get

θ =
{

3a(‖ρ0‖∞ m
m−1 − 2

3 )2 + 1 − 4
3a if ‖ρ0‖∞ m

m−1 < 2
3 ,

1 − 4
3a if ‖ρ0‖∞ m

m−1 ≥ 2
3 ,

and

θ̃ = 2a
(

3‖ρ0‖∞
m

m − 1
+ 2

)
.

With these numbers, rate of convergence (1.2) follows from Theorem 1.1.
Next, assume that 3

4 < a ≤ 1. To deal with only classical solutions, let ρ0 ∈ C2+α(�̄) be such 
that ρ0 ≥ 0 in �, ρ0(0) = ρ0(L) = 0, and

0 < b0 := ‖ρ0‖∞ <
2a − √

a(4a − 3)

3a
;

then 2a−√
a(4a−3)

3ab0
> 1 so that there exists a unique number m∗ > 1 with m∗

m∗−1 = 2a−√
a(4a−3)

3ab0
, 

that is, m∗ = 2a−√
a(4a−3)

a(2−3b0)−
√

a(4a−3)
. Let fix any 0 < τ < 1, λ > 0 and m > m∗; here, b0

m
m−1 <

2a−√
a(4a−3)
3a

. Set s̄ = 1
2

(
b0

m
m−1 + 2a−√

a(4a−3)
3a

)
. We then modify the function σ(s) = as3 −

2as2 + s so as to obtain a function σ̃ ∈ C3(R) such that

⎧⎪⎨
⎪⎩

σ̃ (s) = σ(s) ∀s ∈ [−s̄, s̄],
λ ≤ σ̃ ′(s) ≤ � ∀s ∈ R,

σ̃ ′′′ is bounded in R,

(4.7)

where � > λ > 0 are some constants. It now follows from [11, Theorem 12.14] that there exists 
a unique solution ρ ∈ C2,1(�̄ × [0, ∞)) to the initial–boundary value problem
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⎧⎨
⎩

ρt = (σ̃ (ρ))xx in � × (0,∞),

ρ = ρ0 on � × {t = 0},
ρ(0, t) = ρ(L, t) = 0 for t ∈ (0,∞),

(4.8)

such that ρ ∈ C2+α,1+ α
2 (�̄×[0, T ]) for each T > 0. From Lemma 2.1 and the initial and bound-

ary conditions, we have that for all t2 > t1 ≥ 0,

0 = min
�̄

ρ(·, t1) = min
�̄

ρ(·, t2) ≤ max
�̄

ρ(·, t2) ≤ max
�̄

ρ(·, t1).

In particular, we have 0 ≤ ρ ≤ ‖ρ0‖∞ in � × (0, ∞); thus from (4.7) and (4.8), we see that ρ is 
also a solution to problem (4.6). Using the notation of Theorem 1.1, it follows from (4.7) that

θ = 3a
(
‖ρ0‖∞

m

m − 1
− 2

3

)2 + 1 − 4

3
a

and

θ̃ = 2a
(

3‖ρ0‖∞
m

m − 1
+ 2

)
.

With these numbers, rate of convergence (1.2) follows from the theorem.
We now summarize what we have discussed so far as follows. The first one is on the large time 

behaviors of classical solutions to problem (4.6) under a weak adhesion effect for all smooth and 
positive initial data.

Theorem 4.1 (Weak aggregation). Let σ be the flux function given by (4.5). Assume 0 ≤ a < 3
4 . 

Let ρ0 ∈ C2+α(�̄) be such that ρ0 ≥ 0 in � and ρ0(0) = ρ0(L) = 0. Then there exists a unique 
solution ρ ∈ C2,1(�̄ × [0, ∞)) to problem (4.6) satisfying the following:

(i) ρ ∈ C2+α,1+ α
2 (�̄ × [0, T ]) for each T > 0,

(ii) 0 = min�̄ ρ(·, t1) = min�̄ ρ(·, t2) ≤ max�̄ ρ(·, t2) ≤ max�̄ ρ(·, t1) for all t2 > t1 ≥ 0,
(iii) ‖ρ(·, t)‖∞ ≤ Ce−γ t for all t ≥ 0, where 0 < τ < 1, λ > 0, m > 1,

θ :=
{

3a(‖ρ0‖∞ m
m−1 − 2

3 )2 + 1 − 4
3a if ‖ρ0‖∞ m

m−1 < 2
3 ,

1 − 4
3a if ‖ρ0‖∞ m

m−1 ≥ 2
3 ,

θ̃ := 2a
(

3‖ρ0‖∞
m

m − 1
+ 2

)
,

γ := τθλ2e−λL

max
{ ‖ρ0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− e−λL

, and

C := ‖ρ0‖∞
max

{ ‖ρ0‖∞ θ̃
(1−τ)θ

+ 1,m
}

− e−λL

max
{ ‖ρ0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− 1

.
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The next one deals with the large time behaviors of classical solutions to problem (4.6) in a 
strongly aggregative species for all smooth and positive initial data whose maximum is less than 
a certain threshold.

Theorem 4.2 (Strong aggregation). Let σ be the flux function given by (4.5). Assume 3
4 < a ≤ 1. 

Let ρ0 ∈ C2+α(�̄) be such that ρ0 ≥ 0 in �, ρ0(0) = ρ0(L) = 0, and

‖ρ0‖∞ <
2a − √

a(4a − 3)

3a
.

Then there exists a unique solution ρ ∈ C2,1(�̄ × [0, ∞)) to problem (4.6) satisfying the follow-
ing:

(i) ρ ∈ C2+α,1+ α
2 (�̄ × [0, T ]) for each T > 0,

(ii) 0 = min�̄ ρ(·, t1) = min�̄ ρ(·, t2) ≤ max�̄ ρ(·, t2) ≤ max�̄ ρ(·, t1) for all t2 > t1 ≥ 0,
(iii) ‖ρ(·, t)‖∞ ≤ Ce−γ t for all t ≥ 0, where 0 < τ < 1, λ > 0,

m >
2a − √

a(4a − 3)

a(2 − 3‖ρ0‖∞) − √
a(4a − 3)

,

θ := 3a
(
‖ρ0‖∞

m

m − 1
− 2

3

)2 + 1 − 4

3
a,

θ̃ := 2a
(

3‖ρ0‖∞
m

m − 1
+ 2

)
,

γ := τθλ2e−λL

max
{ ‖ρ0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− e−λL

, and

C := ‖ρ0‖∞
max

{ ‖ρ0‖∞ θ̃
(1−τ)θ

+ 1,m
}

− e−λL

max
{ ‖ρ0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− 1

.

Remark 4.1. We now interpret the result of Theorems 4.1 and 4.2 in the context of zoology. Im-
posing the absorbing boundary condition, the outside environment is very hostile so that animals 
crossing the border of the habitat will be removed instantly. This condition would readily imply 
the extinction of the species after a long time. Such an expected phenomenon is easily confirmed 
when gregariousness among the animals is low (Theorem 4.1): the population density converges 
uniformly to 0 at an exponential rate as t → ∞. However, when the aggregation effect between 
the animals is high, it is not a simple task to establish the existence of global weak solutions 
to problem (4.6) for initial data whose magnitude exceeds a certain threshold. Nonetheless, the 
expected phenomenon is verified if the maximum of the initial datum is less than the threshold 
(Theorem 4.2).

4.3. The Perona–Malik model

As the last application, we consider the Perona–Malik model [14] in image processing:⎧⎨
⎩

ut = (
ux

1+u2
x

)
x

in � × (0,∞),

u = u0 on � × {t = 0},
u (0, t) = u (1, t) = 0 for t ∈ (0,∞),

(4.9)
x x
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where � = (0, 1) ⊂ R is the spatial domain for a one-dimensional computer vision, u0(x) is the 
grey level of an initial noisy picture at point x ∈ �, and u(x, t) denotes the grey level of the 
enhanced image at point x ∈ � and time t > 0.

Problem (4.9) is well-posed and admits a global classical solution for all sufficiently smooth 
initial data u0 with u′

0(0) = u′
0(1) = 0 and ‖u′

0‖∞ < 1 [6]. If u′
0(0) = u′

0(1) = 0 and ‖u′
0‖∞ > 1, 

no global C1 solution to (4.9) exists [6,4]; in this case, even a local C1 solution would not exist 
unless u0 were infinitely differentiable [7].

Here, we focus only on large time behaviors of a global classical solution to problem (4.9)
when the initial brightness u0 has no sharp change in �. For this purpose, let u0 ∈ C2+α(�̄)

be such that u′
0(0) = u′

0(1) = 0 and 0 < b0 := ‖u′
0‖∞ < 1. Since 1/b0 > 1, there exists a unique 

number m∗ > 1 with m∗
m∗−1 = 1

b0
; that is, m∗ = 1

1−b0
. Let us fix any 0 < τ < 1, λ > 0 and m > m∗; 

whence b0
m

m−1 < 1. Set s̄ = 1
2 (b0

m
m−1 + 1).

We now modify the Perona–Malik function R � s �→ s

1+s2 in order to obtain an odd function 

σ ∈ C3(R) such that

⎧⎨
⎩

σ(s) = s

1+s2 ∀s ∈ [−s̄, s̄],
λ ≤ σ ′(s) ≤ � ∀s ∈R,

σ ′′′ is bounded in R,
(4.10)

where � > λ > 0 are some constants. It now follows from [11, Theorem 13.24] that there exists 
a unique solution u ∈ C2,1(�̄ × [0, ∞)) to the initial–boundary value problem

⎧⎨
⎩

ut = (σ (ux))x in � × (0,∞),
u = u0 on � × {t = 0},
ux(0, t) = ux(1, t) = 0 for t ∈ (0,∞),

(4.11)

with the property that u ∈ C2+α,1+ α
2 (�̄ × [0, T ]) for each T > 0. Moreover, we can apply [8, 

Lemma 2.2] to infer an improved interior regularity of u as u ∈ C3+β,
3+β

2 (� × (0, T ]) for all 
T > 0, where β ∈ (0, 1) is any fixed number. In particular, we have ρ := ux ∈ C1,0(�̄×[0, ∞)) ∩
C2,1(� × (0, ∞)). With ρ0 := u′

0 ∈ C1(�̄) and L = 1, it is then easy to see that ρ solves prob-
lem (1.1); thus both Theorem 1.1 and Lemma 2.1 are applicable.

It follows from Lemma 2.1 that

min
�̄

ux(·, t1) ≤ min
�̄

ux(·, t2) ≤ 0 ≤ max
�̄

ux(·, t2) ≤ max
�̄

ux(·, t1)

for all t2 > t1 ≥ 0. In particular, we have ‖ux‖L∞(�×(0,∞)) = ‖u′
0‖∞ = b0 < b0

m
m−1 < s̄ < 1. 

From this, (4.10) and (4.11), we see that u is a classical solution to problem (4.9).
Next, Theorem 1.1 yields that with L = 1,

‖ux(·, t)‖∞ ≤‖u′
0‖∞

max
{ ‖u′

0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− e−λ

max
{ ‖u′

0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− 1

× exp

(
− τθλ2e−λ

max
{ ‖u′

0‖∞ θ̃ + 1,m
}

− e−λ

t

)
,

(1−τ)θ
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where

θ := min
[−‖u′

0‖∞ m
m−1 ,‖u′

0‖∞ m
m−1 ]

σ ′ and θ̃ := max
[−‖u′

0‖∞ m
m−1 ,‖u′

0‖∞ m
m−1 ]

|σ ′′|.

By our choice of the function σ in (4.10), we have

θ = 1 − (b0
m

m−1 )2

((b0
m

m−1 )2 + 1)2

and

θ̃ =
⎧⎨
⎩

2b0
m

m−1 (3−(b0
m

m−1 )2)

((b0
m

m−1 )2+1)3 if 0 < b0
m

m−1 <
√

2 − 1,

3
4 + 1√

2
if

√
2 − 1 ≤ b0

m
m−1 < 1.

Let us now summarize the above result as follows.

Theorem 4.3. Let u0 ∈ C2+α(�̄) be such that u′
0(0) = u′

0(1) = 0 and ‖u′
0‖∞ < 1. Then there 

exists a unique solution u ∈ C2,1(�̄ × [0, ∞)) to problem (4.9) satisfying the following:

(i) u ∈ C2+α,1+ α
2 (�̄ × [0, T ]) for each T > 0,

(ii)
∫
�

u(x, t) dx = ∫
�

u0(x) dx for all t ≥ 0,
(iii) min�̄ u(·, t1) ≤ min�̄ u(·, t2) ≤ max�̄ u(·, t2) ≤ max�̄ u(·, t1) for all t2 > t1 ≥ 0,
(iv) min�̄ ux(·, t1) ≤ min�̄ ux(·, t2) ≤ 0 ≤ max�̄ ux(·, t2) ≤ max�̄ ux(·, t1) for all t2 > t1 ≥ 0, 

and
(v) ‖u(·, t) − ū0‖W 1,∞(�) ≤ Ce−γ t for all t ≥ 0, where ū0 := ∫ 1

0 u0(x) dx, 0 < τ < 1, λ > 0, 
m > 1

1−‖u′
0‖∞ > 1,

θ := 1 − (‖u′
0‖∞ m

m−1 )2

((‖u′
0‖∞ m

m−1 )2 + 1)2
,

θ̃ :=
⎧⎨
⎩

2‖u′
0‖∞ m

m−1 (3−(‖u′
0‖∞ m

m−1 )2)

((‖u′
0‖∞ m

m−1 )2+1)3 if 0 < ‖u′
0‖∞ m

m−1 <
√

2 − 1,

3
4 + 1√

2
if

√
2 − 1 ≤ ‖u′

0‖∞ m
m−1 < 1,

γ := τθλ2e−λ

max
{ ‖u′

0‖∞ θ̃

(1−τ)θ
+ 1,m

}
− e−λ

,

and C > 0 is a constant depending only on ‖u′
0‖∞, σ , τ , λ and m.

In the exponential rate γ , one has the freedom of choosing any constants 0 < τ < 1, λ > 0
and m > 1

1−‖u′
0‖∞ to fix it. We do not pursue here finding the least upper bound for such rates γ

only in terms of ‖u′ ‖∞.
0
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Proof of Theorem 4.3. The proof is almost complete above. We just mention the unfinished 
parts.

Item (ii) is an easy consequence of the Neumann boundary condition.
Item (iii) follows from [9, Proposition 2.4].
Item (v) is a combination of the above result and Poincaré’s inequality. �

Remark 4.2. Let us interpret the result of Theorem 4.3 in a viewpoint of image processing. We 
only consider a slightly noisy 1-D picture of grey level u0 with ‖u′

0‖∞ < 1, which may be the 
less interesting case. The Perona–Malik scheme (4.9) then essentially does the job of diffusing 
the image in such a way that

• the total brightness of the initial image is preserved at all times,
• the grey level of the present image can go neither above the maximum level nor below the 

minimum level of the past image,
• the rate of change in the grey level of the present image cannot be sharper than that of the 

past image, and
• the grey level of the initial image is uniformly smoothed out to the constant level of the initial 

mean brightness as t → ∞ at an exponential rate.
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